Reconstitution of Mitochondria Derived Vesicle Formation Demonstrates Selective Enrichment of Oxidized Cargo
نویسندگان
چکیده
The mechanisms that ensure the removal of damaged mitochondrial proteins and lipids are critical for the health of the cell, and errors in these pathways are implicated in numerous degenerative diseases. We recently uncovered a new pathway for the selective removal of proteins mediated by mitochondrial derived vesicular carriers (MDVs) that transit to the lysosome. However, it was not determined whether these vesicles were selectively enriched for oxidized, or damaged proteins, and the extent to which the complexes of the electron transport chain and the mtDNA-containing nucloids may have been incorporated. In this study, we have developed a cell-free mitochondrial budding reaction in vitro in order to better dissect the pathway. Our data confirm that MDVs are stimulated upon various forms of mitochondrial stress, and the vesicles incorporated quantitative amounts of cargo, whose identity depended upon the nature of the stress. Under the conditions examined, MDVs did not incorporate complexes I and V, nor were any nucleoids present, demonstrating the specificity of cargo incorporation. Stress-induced MDVs are selectively enriched for oxidized proteins, suggesting that conformational changes induced by oxidation may initiate their incorporation into the vesicles. Ultrastructural analyses of MDVs isolated on sucrose flotation gradients revealed the formation of both single and double membranes vesicles of unique densities and uniform diameter. This work provides a framework for a reductionist approach towards a detailed examination of the mechanisms of MDV formation and cargo incorporation, and supports the emerging concept that MDVs are critical contributors to mitochondrial quality control.
منابع مشابه
A Vesicular Transport Pathway Shuttles Cargo from Mitochondria to Lysosomes
Mitochondrial respiration relies on electron transport, an essential yet dangerous process in that it leads to the generation of reactive oxygen species (ROS). ROS can be neutralized within the mitochondria through enzymatic activity, yet the mechanism for steady-state removal of oxidized mitochondrial protein complexes and lipids is not well understood. We have previously characterized vesicul...
متن کاملPartial Resolution of the Enzymes Catalyzing Oxidative Phosphorylation
1. The ability to phosphorylate ADP during oxidation of NADH by ubiquinone-1 was restored to the NADH-ubiquinone reductase complex by combining the latter with phospholipids and a hydrophobic protein fraction derived from bovine heart mitochondria. 2. Phosphorylation was abolished by rotenone, uncoupling agents, or rutamycin. The efficiency of ATP formation was as high as 0.5 mole per mole of N...
متن کاملParkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control.
Mitochondrial dysfunction has long been associated with Parkinson's disease (PD). Parkin and PINK1, two genes associated with familial PD, have been implicated in the degradation of depolarized mitochondria via autophagy (mitophagy). Here, we describe the involvement of parkin and PINK1 in a vesicular pathway regulating mitochondrial quality control. This pathway is distinct from canonical mito...
متن کاملVAMP4 Is an Essential Cargo Molecule for Activity-Dependent Bulk Endocytosis
The accurate formation of synaptic vesicles (SVs) and incorporation of their protein cargo during endocytosis is critical for the maintenance of neurotransmission. During intense neuronal activity, a transient and acute accumulation of SV cargo occurs at the plasma membrane. Activity-dependent bulk endocytosis (ADBE) is the dominant SV endocytosis mode under these conditions; however, it is cur...
متن کاملVisualization of cargo concentration by COPII minimal machinery in a planar lipid membrane.
Selective protein export from the endoplasmic reticulum is mediated by COPII vesicles. Here, we investigated the dynamics of fluorescently labelled cargo and non-cargo proteins during COPII vesicle formation using single-molecule microscopy combined with an artificial planar lipid bilayer. Single-molecule analysis showed that the Sar1p-Sec23/24p-cargo complex, but not the Sar1p-Sec23/24p comple...
متن کامل